Search results for "MESHLESS METHOD"

showing 10 items of 30 documents

Unconditionally stable meshless integration of Maxwell's eqautions

2013

Settore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaMaxwell's equationsMeshless methodleapfrog ADI
researchProduct

Meshless Simulation of Friction Stir Welding

2007

This paper encompasses our first efforts towards the numerical simulation of friction stir welding by employing a Lagrangian approach. To this end, we have employed a meshless method, namely the Natural Element Method (NEM). Friction Stir welding is a welding process where the union between the work pieces is achieved through the extremely high deformation imposed by a rotating pin, which moves between the two pieces. This extremely high strain is the main responsible of the difficulties associated with the numerical simulation of this forming process. Eulerian and Arbitrary Lagrangian-Eulerian (ALE) frameworks encounter difficulties in some aspects of the simulation. For instance, these ap…

Regularized meshless methodEngineeringALUMINUM EXTRUSIONFriction Stir WeldingBoundary (topology)Mechanical engineering02 engineering and technologyWelding01 natural scienceslaw.inventionsymbols.namesake0203 mechanical engineeringlawFriction stir welding0101 mathematicsSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazionemeshlessComputer simulationbusiness.industryNumerical analysisForming processesEulerian path[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]Natural Element Method010101 applied mathematics020303 mechanical engineering & transportssymbolsFEM MODELbusinessAIP Conference Proceedings
researchProduct

Exponential convergence andH-c multiquadric collocation method for partial differential equations

2003

The radial basis function (RBF) collocation method uses global shape functions to interpolate and collocatethe approximate solution of PDEs. It is a truly meshless method as compared to some of the so-calledmeshless or element-free finite element methods. For the multiquadric and Gaussian RBFs, there are twoways to make the solution converge—either by refining the mesh size

Numerical AnalysisRegularized meshless methodPartial differential equationApplied MathematicsGaussianMathematical analysisResidualSingular boundary methodComputational Mathematicssymbols.namesakeCollocation methodsymbolsOrthogonal collocationRadial basis functionAnalysisMathematicsNumerical Methods for Partial Differential Equations
researchProduct

ON THE UNIT CELL BOUNDARY VALUE PROBLEM WITH MESHLESS FORMULATION FOR MASONRY STRUCTURES

2017

In a generic multi-scale computational homogenization (CH) procedure, the crucial point is the definition and the solution of the Unit Cell (UC) Boundary Value Problem (BVP). The main aspects to be chosen for the formulation of the UC BVP are: (i) geometry; (ii) bound- ary conditions (BCs); (iii) material models; (iv) numerical approximation techniques. All these components play a key-role in the efficiency of the multi-scale procedure. In the present study, the UC BVP is formulated for running bond masonry according to a dis- placement based variational formulation, where the material of the blocks is considered indefi- nitely elastic and the mortar joints are simulated by zero-thickness e…

Meshless Methods Masonry Boundary Value ProblemSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

An implicit time domain meshless formulation for Maxwell’s PDEs

2011

Settore ING-IND/31 - ElettrotecnicaSettore MAT/08 - Analisi NumericaMeshless methodPDEs
researchProduct

Smoothed Particle Electromagnetics Modelling on HPC-GRID Environment

2012

In this paper a meshless approach on a high performance grid computing environment to run fast onerous electromagnetic numerical simulations, is presented. The grid computing and the message passing interface standard have been employed to improve the computational efficiency of the Smoothed Particle Electromagnetics meshless solver adopted. Applications involving an high number of particles can run on a grid computational environment simulating complex domains not accessible before and offer a promising approach for the coupling of particle models to continuous models. The used meshless solver is straightforward to program and fully parallelizable. The results of the parallel numerical sch…

Settore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaElectromagnetic Simulation Grid Computing Meshless method Smoothed Particle Electromagnetics
researchProduct

A novel numerical meshless approach for electric potential estimation in transcranial stimulation

2015

In this paper, a first application of the method of fundamental solutions in estimating the electric potential and the spatial current density distribution in the brain due to transcranial stimulation, is presented. The coupled boundary value p roblems for the electric potential are solved in a meshless way, so avoiding the use of grid based numerical methods. A multi-spherical geometry is considered and numerical results are discussed.

Regularized meshless methodMathematical optimizationmethod of fundamental solutionQuantitative Biology::Neurons and CognitionNumerical analysistranscranial electrical stimulationCurrent density distributionGrid basedBoundary valuesPhysics and Astronomy (all)Settore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaApplied mathematicsMethod of fundamental solutionsMeshfree methodsmeshless methodElectric potentialnumerical approximationMathematics
researchProduct

Numerical Investigations of an Implicit Leapfrog Time-Domain Meshless Method

2014

Numerical solution of partial differential equations governing time domain simulations in computational electromagnetics, is usually based on grid methods in space and on explicit schemes in time. A predefined grid in the problem domain and a stability step size restriction need. Recently, the authors have reformulated the meshless framework based on smoothed particle hydrodynamics, in order to be applied for time domain electromagnetic simulation. Despite the good spatial properties, the numerical explicit time integration introduces, also in a meshless context, a severe constraint. In this paper, at first, the stability condition is addressed in a general way by allowing the time step inc…

Numerical AnalysisRegularized meshless methodApplied MathematicsMeshless methodsMathematical analysisGeneral EngineeringGridTheoretical Computer ScienceComputational MathematicsAlternating direction implicit methodSettore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaComputational Theory and MathematicsProblem domainADI leapfrog methodSmoothed particle electromagneticsComputational electromagneticsMeshfree methodsTime domainSoftwareMathematicsNumerical partial differential equations
researchProduct

Free vibrations of anisotropic panels

2004

A meshfree approach, called Displacement Boundary Method, for the analysis of in-plane and out-of-plane free vibrations of anisotropic plates is presented. The discretization process is based on the use of a modified variational principle and the static fundamental solutions of the problem operators. The stiffness and mass matrices are frequencyindependent, symmetric and positive definite and their computation requires boundary integrations of regular kernels only. Thus, the final resolving system can be solved with classical approaches by using standard numerical procedures. Numerical results are presented to show the accuracy and effectiveness of the method.

Meshless methods meshfree methods boundary element method free vibrations anisotropic plates.Settore ING-IND/04 - Costruzioni E Strutture Aerospaziali
researchProduct

Numerical Simulation of Friction Stir Welding by Natural Element Methods

2008

In this work we address the problem of numerically simulating the Friction Stir Welding process. Due to the special characteristics of this welding method (i.e., high speed of the rotating pin, very large deformations, etc.) finite element methods (FEM) encounter several difficulties. While Lagrangian simulations suffer from mesh distortion, Eulerian or Arbitrary Lagrangian Eulerian (ALE) ones still have difficulties due to the treatment of convective terms, the treatment of the advancing pin, and many others. Meshless methods somewhat alleviate these problems, allowing for an updated Lagrangian framework in the simulation. Accuracy is not affected by mesh distortion (and hence the name mes…

Regularized meshless method0209 industrial biotechnologyMaterials scienceMechanical engineering010103 numerical & computational mathematicsWelding02 engineering and technology01 natural scienceslaw.invention[SPI.MAT]Engineering Sciences [physics]/Materialssymbols.namesakeFSW Meshless020901 industrial engineering & automation0203 mechanical engineeringlawMeshfree methodsFriction stir weldingGeneral Materials Science0101 mathematicsSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneMaterial point methodComputer simulationbusiness.industryEulerian pathStructural engineering[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]Finite element method020303 mechanical engineering & transportssymbolsbusiness
researchProduct